SISTEM PERTIDAKSAMAAN KUADRAT-KUADRAT DAN BEBERAPA CONTOH SOALNYA

 (1) Tititk potong dengan sumbu-X syarat y = 0

x2 – 9 = 0
(x + 3)(x – 3) = 0
x = –3 dan x = 3
Titik potongnya (–3, 0) dan (3, 0)
(2) Tititk potong dengan sumbu-Y syarat x = 0
y = x2 – 9
y = (0)2 – 9
y = –9
Titik potongnya (0, –9)

(3) Menentukan titik minimum fungsi y = x2 – 9


(4) Gambar daerah penyelesaiannya
(Daerah yang diarsir adalah daerah penyelesaian)


b. Gambar daerah penyelesaian pertidaksamaan y ≤ –x2 + 6x – 8
(1) Tititk potong dengan sumbu-X syarat y = 0
–x2 + 6x – 8 = 0
x2 – 6x + 8 = 0
(x – 4)(x – 2) = 0
x = 4 dan x = 2
Titik potongnya (4, 0) dan (2, 0)

(2) Tititk potong dengan sumbu-Y syarat x = 0
y = –x2 + 6x – 8
y = –(0)2 + 6(0) – 8
y = –8
Titik potongnya (0, –8)
(3) Menentukan titik maksimum fungsi y = –x2 + 6x – 8



(4) Gambar daerah penyelesaiannya
(Daerah yang diarsir adalah daerah penyelesaian)


Daerah penyelesaian kedua pertidaksamaan itu adalah irisan dua daerah penyelesaian masing-masing pertidaksamaannya, yakni:

Komentar

Postingan populer dari blog ini

Limit

PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU

persamaan dan tidakpersamaan rasional