SISTEM PERSAMAAN KUADRAT-KUADRAT DAN BEBERAPA CONTOH SOALNYA
1. Tentukan himpunan penyelesaian SPKK jika diketahui persamaan y = 5x² dan y = 6x² – 7x?
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = 5x² ke y = 6x² – 7x. Untuk itu hasilnya akan menjadi:
5x² = 6x² – 7x
6x² – 5x² – 7x = 0
x² – 7x = 0
x(x – 7) = 0
x = 0 atau x = 7
Selanjutnya nilai x di atas disubtsitusikan ke persamaan y = 5x². Maka :
Untuk x = 0 → y = 5x²
y = 5(0)²
y = 0
Untuk x = 7 → y = 5x²
y = 5(7)²
y = 245
Jadi himpunan penyelesaian SPKK tersebut ialah {(0, 0), (7, 245)}.
Baca juga : Materi Sistem Persamaan Linear Kuadrat (SPLK) Lengkap
2. Tentukan himpunan penyelesaian SPKK jika persamaannya y = x² – 3 dan y = x² – 2x – 9?
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = x² – 3 ke y = x² – 2x – 9. Untuk itu hasilnya akan menjadi seperti di bawah ini:
x² – 3 = x² – 2x – 9
x² – x² = -2x – 9 + 3
2x = -6
x = -3
Setelah itu x = -3 disubstitusikan ke y = x² – 3. Maka:
y = x² – 3
y = (-3)² – 3
y = 6
Jadi himpunan penyelesaian SPKK tersebut ialah {(-3, 6)}.
3. Tentukan himpunan penyelesaian SPKK jika persamaannya y = -4x² dan y = x² + 4x + 3?
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = -4x² ke y = x² + 4x + 3. Untuk itu hasilnya akan menjadi seperti di bawah ini:
-4x² = x² + 4x + 3
x² + 4x² + 4x + 3 = 0
5x² + 4x + 3 = 0
Langkah selanjutnya menggunakan cara diskriminan untuk menyelesaikan persamaan di atas. Maka:
5x² + 4x + 3 = 0, dimana a = 5, b = 4 dan c = 3
D = b² – 4ac
D = (4)² – 4(5)(3)
D = 16 – 60
D = -44
Jadi himpunan penyelesaian SPKK tersebut ialah {∅} atau himpunan kosong karena D < 1.
Komentar
Posting Komentar