PERSAMAAN LINEAR TIGA VARIABEL
- Tentukan persamaan yang memiliki bentuk sederhana. Persamaan dengan bentuk sederhana memiliki koefisien 1 atau 0.
- Nyatakan salah satu variabel dalam bentuk dua variabel lain. Contohnya, variabel x dinyatakan dalam variabel y atau z.
- Substitusikan nilai variabel yang diperoleh pada langkah kedua ke persamaan lain yang ada di SPLTV, sehingga diperoleh sistem persamaan linear dua variabel (SPLDV).
- Tentukan penyelesaian SPLDV yang diperoleh pada langkah ketiga.
- Tentukan nilai semua variabel yang belum diketahui.
Coba kita lakukan contoh soal berikut. Tentukan himpunan penyelesaian sistem persamaan linear tiga variabel di bawah ini.
x + y + z = -6 … (1)
x – 2y + z = 3 … (2)
-2x + y + z = 9 … (3)
Pertama, kita dapat mengubah persamaan (1) menjadi, z = -x – y – 6 menjadi persamaan (4). Kemudian, kita dapat menyubstitusikan persamaan (4) ke persamaan (2) sebagai berikut.
x – 2y + z = 3
x – 2y + (-x – y – 6) = 3
x – 2y – x – y – 6 = 3
-3y = 9
y = -3
Setelah itu, kita dapat menyubstitusikan persamaan (4) ke persamaan (3) sebagai berikut.
-2x + y + (-x – y – 6) = 9
-2x + y – x – y – 6 = 9
-3x = 15
x = -5
Kita sudah mendapatkan nilai x = -5 dan y = -3. Kita dapat memasukkannya ke persamaan (4) untuk memperoleh nilai z sebagai berikut.
z = -x – y – 6
z = -(-5) – (-3) – 6
z = 5 + 3 – 6
z = 2
Jadi, kita mendapat himpunan penyelesaian (x, y, z) = (-5, -3, 2)
Komentar
Posting Komentar