KOMPOSISI FUNGSI DAN INVERS FUNGSI

 

Fungsi Komposisi

Seperti yang tela disebutkan di atas, fungsi komposisi merupakan suatu penggabungan dari suatu operasi dua jenis fungsi f(x) dan juga g(x) sehingga mampu menghasilkan suatu fungsi baru.

Adapun rumus untuk fungsi komposisi, yaitu:

Rumus Fungsi Komposisi

Sperti yang terdapat pada uraian di atas, operasi untuk fungsi komposisi tersebut biasa dinotasikan dengan penggunakan huruf atau simbol “o”.

Di mana simbol tersebut bisa kita baca sebagai komposisi ataupun bundaran. Fungsi baru inilah yang bisa terbentuk dari f(x) dan g(x) yaitu:

1. (f o g)(x) yang berarti g dimasukkan ke f

2. (g o f)(x) yang berarti f dimasukkan ke g

Fungsi tunggal merupakan suatu fungsi yang dapat dinotasikan dengan penggunakan huruf “f o g” atau dapat dibaca “f bundaran g”.

Lalu Fungsi (f o g) (x) = f (g (x)) → fungsi g (x) dikomposisikan sebagai fungsi f (x)

Sementara itu, “g o f” dibaca sebagai fungsi g bundaran f. Sehingga, “g o f” merupakan fungsi f yang diselesaikan terlebih dahulu dari fungsi g.

Agar dapat memahami fungsi ini, perhatikan gambar dibawah ini :

fungsi komposisi f o g o h

Advertisement

Dari skema rumus di atas, dapat kita ketahui bahawa:

Apabila f : A → B ditentukan dengan menggunakan rumus y = f(x)

Apabila g : B → C ditentukan dengan menggunakan rumus y = g(x)

Sehingga, akan kita peroleh hasil fungsi g dan f yaitu:

h(x) = (gof)(x) = g( f(x))

Dari definisi di atas maka bisa kita simpulkan jika fungsi yang melibatkan fungsi f dan g bisa kita tulis seperti berikut ini:

  • (g o f)(x) = g(f(x))
  • (f o g)(x) = f(g(x))

Komentar

Postingan populer dari blog ini

PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU

SISTEM PERTIDAKSAMAAN KUADRAT-LINEAR DAN BEBERAPA CONTOH SOALNYA

SOAL FUNGSI: KUADRAT, RASIONAL, IRASIONAL